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Abstract—Air traffic management and airspace management agement actions by solving an integer program [3], [4]. More
.reduce air traffic congestion to maintain safety.l Mangglng taffic recently, theMaxWeightalgorithm from queuing theory has
induces costs on airspace users and managing airspace CasiSepaan applied to tactical air traffic management [5]. Fori¢att

additional work for air traffic controllers. This paper prop oses _. t alqorith based ic hearisti
and simulates algorithms for tactically reducing airspacecon- airspace management, aigorithms based on myopic hesjistic

gestion with coordinated air traffic and airspace managemen integer programming, and dynamic programming have been
A modified version of the Projective Cone Scheduling algorim  proposed [6]-[8]. Some research has investigated the coor-
performs tactical air traffic management. An algorithm based  dination of air traffic and airspace management for strategi
on approximate dynamic programming accomplishes tactical {ime horizons of an hour or more [9]-[11]. However, most
airspace management. Three types of coordination betweehese . i . . .
air traffic and airspace management algorithms are investigted. &/ traffic management algorlthms assume that alrspacelwnl
Monte Carlo simulations of a simple problem instance involing b€ held constant, and most airspace management algorithms
severe congestion indicate that increased coordination beeen do not consider how delayed or rerouted traffic will impact
air traffic and airspace management can lead to lower costs Wi ajrspace quality. Furthermore, no publications have stiidi
no increase in algorithm computation time. algorithms for coordinated air traffic and airspace manaaygm
in the tactical timeframe of an hour or less.

This paper is a preliminary investigation of algorithms for

Congested airspace contains more aircraft than can bg satelordinated tactical air traffic and airspace managemémasd
and efficiently controlled by air traffic controllers. Corsgjen algorithms suggest air traffic and airspace controls to cedu
can be reduced by managing air traffic or airspab@ffic congestion in a way that considers the cost of congestion,
Management Unitgactically manage air traffic by delaying ortraffic management, and airspace management. The algarithm
rerouting flights to reduce congestion over the next houeseh incorporate various degrees of coordination between aficr
delays or reroutes are costly for airspace users. Managimd airspace management.
airspace, on the other hand, involves altering how respon-The model and the problem statement are in Section II. Al-
sibility for controlling aircraft is divided among conttets. gorithms for solving this problem are specified in Sectidn I
Controller supervisors accomplish tactical airspace mana The experimental setup in Section 1V is followed by the resul
ment by selecting sets of airspace volumes cakxtorsto be in Section V. Opportunities for future work are discussed in
controlled by each controller team. Changes in the assignm&ection VII before the conclusion in Section VI.
of sectors to controller teams disrupt controller acsti
and can degrade safety and efficiency. Traffic Management
Units and controller supervisors coordinate how to use d Air Traffic and Airspace Model
traffic and airspace management to reduce congestion. SincA queuing network is used to model air traffic and airspace.
congestion, traffic management, and airspace managentenDalspite the simplicity of queuing models, they have proven
induce difficulties for controllers or costs for airspacenssit proven themselves to be relatively accurate represensatio
is not always clear if or how traffic and airspace managemestt air traffic [12]-[14]. They also allow powerful controtle
should work together to reduce congestion. gueuing techniques to be leveraged. While it is not trivial

Procedures, tools, and algorithms have been proposedddranslate control actions proposed by such technigues in
assist with tactical air traffic and airspace management. idaplementable directives to aircraft [15], controlled girg
person called aulti-Sector Plannercould coordinate local algorithms show promise for air traffic management [5], [16]
traffic and airspace management [1]. Procedures for humaror this study, air traffic is modeled with an Eulerian
decision-makers to tactically coordinate air traffic andéce queuing model. Each queue represents aircraft with péaticu
management while using algorithm-suggested alterations dharacteristics (such as the same destination airpovgrsing
sector geometries have been investigated in recent humangart of the National Airspace System (such as a sector).
the-loop simulations [2]. Thdirspace Restriction Plannegs Sectors are the atomic units of airspace and the sector con-
a tool that proposes and evaluates possible air traffic mdiguration in use at each time step specifies how sectors and

I. INTRODUCTION

Il. PROBLEM STATEMENT



their associated queues are grouped datrol positions A C, be another binary matrix in which the entries in each
control position is a set of sectors that are managed by a teeow identify the elements o/ (k) that must be added up to
of air traffic controllers. determine the total number of aircraft transitioning asras

1) State: Time is discretized into time steps of lendth particular boundary. LeR be a column vector in which each
The system state¥' (k) = (Q(k),C(k)) at a time stepk element expresses an upper bound on the number of aircraft
consists of the number of aircraft in each quéldé) and the that can traverse the boundary affiliated with the corredjmen
sector configuratiorC (k). More precisely,Q(k) is a vector row of C, during a time step. Then the vector inequality
in which an element);;(k) denotes the number of aircraftcapturing rate constraints ;U (k) < R.

passing between boundargnd boundary at timekT". These A valid configuration assigns each sector to exactly one
boundaries can represent any location where traffic may &gntrol position, specifies only spatially contiguous cohpo-
rerouted or delayed. Separate queues could be defined d@ions, and possibly meets other operational requiresr@&ht
flights bound for different destinations. The configuratstte | et C be the set of all valid configurations, and (8}, be the
at time k7" is C(k), a set of control positions. Each controket of all valid configurations that containcontrol positions.
position c is itself a set that contains one or more of tNe pue to staffing constraints, a prescribed number of control
sectors in the set of sectofs positions must be used at each time step.d(&} specify the

2) Control: The control action at each time step also hagne-varying number of control positions that must be used
two parts. The air traffic control implemented between timgt each time step. The configuration control must meet the

kT and time(k + 1)T" is U(k). This control is also a vector constraint thatu(k) € Curi) (€. [u(k)| = d(k + 1)).
with an element for each possible transition from one queue

to another. LeU; (k) denote the number of aircraft in queue

Q5 that are transitioned to quedg;; during time stegc. The  B. Coordinated Tactical Air Traffic and Airspace Management

airspace control action selects the configuration for the neprgplem

time step. This action is denoted k), and it is a set of

control positions that will be in place by timg + 1)T. The The coordinated tactical air traffic and airspace managéemen

overall control action at time stebis U/(k) = (U(k),u(k)). problem (CTATAMP) is to find a control policy that minimizes
3) Dynamics: The system dynamics for the air traffic statéhe expected value of a weighted sum of congestion, traffic

depend on the dynamics of the arrivals to each queue. loemntrol, and airspace control costs over a finite time harizo

A;;(k) be the number of exogenous arrivals passing throughbject to the system dynamics and constraints specified in

sector boundary from outside the system on the way to sectasub-section 1I-A. The CTATAMP is

boundary; during time interval[kT, (k + 1)T). Then the

dynamics of the number of aircraft in each queue@rgk + o K-l
1) = Qi (k) + Ay (k) + X sery Usis (k) = Speorp Uspe(k), __minimize E |y 7 g(X(k),U(k), X(k + 1)) X(0)
[o\ i 5 g : I F*(MD)"')H’K*l) —
wherel(:) is the set of all sector boundaries preceding bound- k=0 2
ary i, and O(y) is similarly the set of all sector boundaries _ @)
following boundaryj. With an appropriateB matrix, the subject toQ(k + 1) = Q(k) + BU (k) + A(k),  (3)
dynamics of all the queues can be specified as k=0,...,K—1
Q(k+1) = Q(k) + BU(k) + A(k). 1) CiU(k) < D(k), k=0,....K—-1 (4)
The system dynamics for the airspace are sindjly+1) = C2U (k) SnR’ k=0,....,K—-1 ®)
u(k). At each time step the configuration control specifies the Uk)ezlW, k=0,...,K—-1 (6)
configuration for the next time step. Ck+1)=u(k), k=0,.... K -1 (7)
4) Constra!nts: Only those aircraft in e_ach queud;; u(k) € Capsry, k=0,...,K—1 (8)
that would, in the absence of any traffic control, cross
X(0) = Ay, 9

airspace boundary during time stepk (D;;(k)) can tran-
sition out of the queue. This is expressed by the inequality
ZteO(j) Uijt(k) < Di;(k) Y i,34,t, k. The vector version of yvh(_erew is a feedback co_ntrol policy in whicho_, o HE-1
these constraints i§,U (k) < D(k), where(C; is a binary indicate what control action to take at each time step, given
matrix. The numbers of transitioning aircraft can only be-no the statei/ (k) = p, (X (k)). Therefore, the problem does not
negative integerst/(k) € Z'1V ¥ k, whereny is the number require that open-loop control actions be specified for khe
of elements in thd/(k) vector. For this research, the;;(k) time steps. Problem data include the distributions/4ok) and
values will be specified by a random process as in Ref. [FP(k), the B, R, C1, andC, matrices, the scheduled number
This random process is unique in that its expected val@&control positionsi(k), the set of sectors, the sets of valid
increases as the number of aircraft in the queue increases, @@nfigurationsC,,, and a few other items required for the cost
eventually saturates because of aircraft separation atdsd function and described later.

Rate constraints may also restrict the number of aircraftThe single time step cost function in the objective (2) is
that can cross a given sector boundary during a time step. ketveighted sum of congestion, traffic control, and airspace



control costs: the number of aircraft that are controlled during or disedss
the briefing and handed off to another controller team duaing

g(X(k), U(k), X(k +1)) = Sege(X (k) (10) transition, respectively, quantities shown in previousesrch
+ Bigt(Q(k), U(k)) to be correlated with airspace transition workload [17]islt
+ Baga(X (k),U(K), X (k + 1)). possible to change configurations at any time step, but this

. . ) cost incentivizes keeping the configuration constant.
A cost function was designed to capture the most important

cost-inducing quantities in simple functional forms. I1l. ALGORITHMS

1) Congestion Cost:This cost penalizes instances when gome algorithms for solving the CTATAMP are developed

control positions contain more than the maximum numbgg connecting a traffic control algorithm with an airspace
of aircraft that they can safely contain. L&t denote this control algorithm.

capacity value for a control positian and letQ - be a vector
containing the capacities for all the control positiongin ~ A. Traffic Control Algorithms

The congestion cost depends on the airspace configurationt) Null Traffic Control: One baseline option for traffic
The number of aircraft in a control position during a timepstecontrol is to not interfere with flights as they traverse the
is a sum of the number of aircraft in the queues correspondiagspace, leaving any congestion problems to be solved by
to sectors in that control position. Léf. be a binary row airspace control. This option consists of always selecting
vector with a1 corresponding to each sector that isdn actions that myopically minimize the traffic control cost:
Similarly, let E- be a binary matrix with a row for each 0 )
control position inC. Then Ec(Q is a vector in which each (Q(k)) € argmin gi(Q(k), U), (14)
element contains the number of aircraft in the control parss vev
in C' when the number of aircraft in each queue is as specifigdere U(k) is the set of traffic control vectors that satisfy
in the vectorQ. The congestion cost is a sum of the numbeonstraints (4)—(6).

of aircraft over the capacity in each control position: 2) Projective Cone Scheduling Traffic ContrdThe Projec-
- _ tive Cone SchedulinPCS) algorithm maximizes throughput
ge(X (k) =1 [EC(k)Q(k) - QC(’C)L : (11) andis computationally efficient [18]. It is a generalizatiof

the MaxWeight algorithm, which has been applied to tactical
air traffic management [5]. For this research, PCS is modified
to consider the impact of control actions on the number
of aircraft over a congestion threshold in control position
rather than the total number of aircraft in single queues.
a(Q(k),U(k)) =17 (D(k) — CLU(k)) + fTU(k). (12) This modification is suitable for the CTATAMP because the
The first term in this cost adds up all the flights that were ab?eonge_stlc_)n cost only penahzgs the numbe_r.of aircraft dwgrt
. . . capacity in each control position. The modified PCS algarith
to transition out of a queue but were instead delayed in the ai

PCS i ifi
The second term can impose a cost on rerouting flights. Tﬁedenoted byp™ (), u(k)) and is specified as follows.

f vector cqntain_s non-negative elements that impose a cost gn o _ argmin(A (U, u(k), a(k)), Gug TH(Q(k), u(k)))
control actions inU/ (k) that correspond to reroutes. UeU(k)

3) Airspace Control CostFinally, the airspace control cost 2: return U € argmin g(Q(k),U)
captures the operational cost of changing the airspacegeonfi veo
uration. When the airspace configuration changes, coetsoll ) ] ] .
must brief each other on the airspace that is moving from!n this algorithma(k) is the expected number of arrivals
one controller team to another, and the new team must gdintime step k. Furthermore, A(U,u, ) and II(Q, u) are
awareness of the air traffic situation in the new airspaciinctions that outpup x 1 vectors, wherep is the number
During this approximatelys-minute transition, operations in ©f control positions inu.

the airspace may become inefficient and less safe. The agspa Each element of the vector output by thgQ, u) function
control cost is specifies, for a control position in airspace configuration

when the queue state i@, the number of aircraft above a
ga(X (B),U(k), X(k+1)) = > E.Q(k)+ > E.Q(k+1).threshold that are in the control position:

ceC— ceCt _

The first term is the number of aircraft in control positions aHeree, is a nonnegative x 1 vector with an entry for each
the start of time step that will not be used in the configurationcontrol position inu. If €., the entry ine, corresponding to
that will be implemented at the start of time step- 1 (the control positione, is set to0, then the PCS algorithm selects
setC ™). The second term is the number of aircraft in contrdtaffic control actions that reduce the aircraftdnwhen the
positions at the start of time stép+ 1 that were not used aircraft count inc is over Q., the capacity ofc. Largere,
during time stept (the setC'™). These two terms approximatevalues encourage the PCS algorithm to reduce the aircraft

Here1l is a column vector of ones and ;. is equal toa when
a > 0 and equal td) otherwise.

2) Traffic Control Cost: The traffic control cost penalizes
airborne delay and reroutes. It is expressed as



count inc before the count reach&g.. The value(Q. —¢.) algorithms to independently select air traffic and airspace
will be referred to as th&CS congestion threshold control actions.

The A(U, u, ) function is specified as 2) Independent PCS Traffic Control and ADP Airspace

Control: A second algorithm will select traffic control actions

AU, u, o) = max{Ey(BU + a), ~1I(Q,u)}. (18)  with PCS and airspace control actions with the ADP controlle

Each entry in the vector output ky specifies the amount thatbut without any coordination between the two. Most traffic
traffic control actionl/ will increase the aircraft over capacitycontrol and airspace control algorithms developed in revi
in a control position, assuming arrivals in this time step.  research do not explicitly consider the impact that theyetav

Finally, G.,x) is a positive-definite symmetric matrix withone another. Traffic control actions will be selected acicwyrd
nonpositive off-diagonal elements that can be used to tuae 0 ®°°X(Q(k), ¥°) and and the airspace control will be
performance of the PCS algorithm [18]. selected according t&°"(X (k), ®°, ¥°).

From among the traffic control actions that minimize the 3) lterative PCS Traffic Control and ADP Airspace Control:
inner product, an action with a minimal traffic control cast iOne way to address the issue of coordinating traffic and
selected by the modified PCS algorithm in step two. airspace control is to use an iterative approach [9], [1UEHS

an iterative algorithm is specified as follows.
B. Airspace Control Algorithms

1) Null Airspace Control: The null airspace controW® 1: Up = P°YQ, C)
always uses a particular airspace configuration. When th& uo = ¥*PP(X, ®°, w0, Uj)
required number of control positions changes, this algorit 3: for i =1 t0 Imax do
selects a new airspace configuration that minimizes only thé:  U; = PPN Q, ;1)
current airspace control cost, assuming thaircraft arrive 5 u; = WAPP(x, @0, W0 ;)

in each queue in the current time step. 6 gi = 9(X,(Us,ui), (Q+ BUi + o, ui))
2) Approximate Dynamic Programming Airspace Control: 7 if [gi — gi—1| < J then
A second airspace control algorithm is based on the rollout§: return U = (U;, w;)

technique for approximate dynamic programming (ADP) and®:  end if
is an extension of the algorithm presented in Ref. [8]. Thig: end for
algorithm will select an airspace configuration that mirdies 11: return U = (Ur,,, Uya)
the certainty equivalent estimate of the sum of the current
stage cost and an approximation of the optimal cost-to-go: Inputs to the iterative algorithm include the system state
ADP . X = (Q,C) and the expected number of arrivals in a time
(X (R), ,0) Eu?;;gjfif){g(x(k)’ (®,u), EX(k+1)) stepa. The algorithm outputs a traffic and airspace control
= pair 4. The 6 parameter specifies how much the cost must
+ Jkr1 (X (k +1), 2, T)}. (17) converge before a control is returned and fhg, parameter
Here J,,(X(k), ®, ¥) is a certainty equivalent estimate of thespecifies the maximum number of iterations.
expected 0ptima| cost-to-go from Staﬂé(k) at time step 4) Coordinated PCS Traffic Control and ADP Airspace
k [19]. It is computed by simulating the system from timé&ontrol: A final algorithm will be referred to as the coordi-
stepk to k + L, using® and ¥ to make traffic and airspacenated algorithm because it explicitly coordinates airficand
control decisions, respectively. In this simulation thevals airspace control by having the ADP airspace control approxi
to the system in time step are a(k) and D(k) is set to its Mate costs-to-go with the same traffic control algorithnt tha
expected value given the simulated gueue state at timdgsteplSEd to control the system. It first selects an airspace @ontr

The equation describing the approximate optimal costetisg action according ta(k) = WA°P(X'(k), 7S w°). Then it se-
ol lects a traffic control according 0 (k) = ®P°Y(Q(k), u(k)).

Te(X(k), ®,0) = > g(X"(j), (®,¥), X"(j + 1)), (18) IV. EXPERIMENTAL SETUP
a=k A simple problem instance is developed to illustrate some
whereX ;) is the value of the system state taken on atjte of the characteristics of the proposed algorithms. These-ch
time step in the simulation. Any traffic and airspace contr@icteristics are more pr_onounced when CO”QG_SUOH IS more
algorithms can be used in the rollouts simulation. A vaoiati Severe, so the problem involves severe congestion thatdwoul

on this algorithm accepts a fourth input that specifies thiier - probably only be encountered in the tactical time horizon if
control to be used when simulating time step some unforeseen weather induced a significant reduction in

. . ) ) ] capacity or change in traffic flows.
C.. Algorithms for the Coordinated Tactical Air Traffic and The traffic queues and sectors used for this simple problem
Airspace Management Problem instance are shown in Fig. 1. There are ten queues handling
1) Null Control: One algorithm that serves as a baselintbows of traffic traveling right-to-left and left-to-rightThe
will not attempt to manage congestion with traffic or airspaadashed rectangles indicate how queues are grouped intixthe s
control. It uses the null airspace and null traffic contrddectors that partition the airspace. Thék) random process



. . . . TABLE |
for each queue is an approximation of the process Shown in progiem AND ALGORITHM PARAMETERS FOR SIMPLEPROBLEM

Fig. 2 of Ref. [5], except for queues—4, which are assumed INSTANCE
to be twice as long as the other queues. THi#ik) processes [ Parameter Value
are modified as described in Ref. [5]. Monte Carlo simulations 100
T (time step duration in minutes) 10
K (time steps in problem instance) 108
— o — N (number of sectors) 6
““l 4 <« 1 8 «— ny (dimension of traffic control vector) 12
Bc (weight on congestion cost) 1
Bt (weight on traffic control cost) 1
P | Ba (weight on airspace control cost) 1/3
< < <+ 3 e a
_lz /lL 'II fi for queue7 to 10 and queus to 9 (reroute cost) 1/2
/ All other f; (reroute cost) 0
B G (PCS weighting parameter matrix) IVueC
> e (parameter vector in PCS congestion threshold) 0
L (ADP rollout simulation duration) 5
¢ (iterative algorithm convergence threshold) 3
g Imax (iterative algorithm maximum number of iterations) 5

Fig. 1. The queueing network used in the simple problem mt&ta ) ) ) )
lower than the costs achieved by the independent and iterati

) algorithms. The coordinated algorithm also achieves lower
Queues and flows at lower altitudes are shaded. The lo4gerage congestion, traffic control, and airspace contistsc
altitude queueg, 4, 6, ands lie below queues, 3, 5 and10, than the iterative or independent algorithms. Similarhe t
and7 and9, respectively. These six sectors can be assignggrative algorithm achieves lower costs of all types tHam t
to between three and five control positions in seven differeygependent algorithm. These results suggest that inedeas

ways. The control position capacitiés. are set tol0 for any jnteraction and coordination between air traffic and aicspa
control position containing just one of the the four sectits  ¢ontrol can lead to better performance.

queues and10, 7 and9, 6, or 8. Control positions with two
or more of these sectors have a capacityl @f The capacity

is 18 for control positions with queuelsand? or 3 and4, and 2 1000 Il Congestion
these sectors cannot be in control positions with othergsieu S 800 Il Traffic control
The arrival process to queugs? is binomial with 10 trials 2 600 [ Airspace control

and a time-varying probability of success that is differfemt 2
each queue [20]. The expected arrival rate for each queue is % 400
shown in Fig. 2, as is the required number of control position § 200

>

<

Null  Independent Iterative Coordinated

o
o

§= _ Queve? 0 . . . . .

o o 5 Fig. 3. Average weighted congestion, traffic control, andce control

So4 --=HEHE 2. sE4 costs achieved by each algorithm.

Z § 58

88 oo Quevel ES2 o g _

é.}(’ zg Each point in Fig. 4 represents a control position at a time

@§ - 0 step during one sample Monte Carlo simulation. Dots in the
20 40 60 80 100 20 40 60 80 100 ; it i

Time Step Time Step red region represent control positions that are over capaci

The black vertical lines represent times where each alguarit
(@) (b) reconfigured the airspace. The coordinated algorithm esluc
Fig. 2. The (a) expected arrival rate into each queue ande(ired number the conge§tlon Wlth relatlvely few arspace reconflgur&no_ .
of control positions at each time step. As traffic arrival rates are decreased or control position
capacities increased, the costs achieved by the indepgnden

The values of various problem and algorithm parametei§rative, and coordinated algorithms converge.
used in this instance are shown in Table I. The experiment wasl he null algorithm takes.02 seconds to compute a control
simulated in MATLAB. All minimizations were conducted by@ction on average. The independent and coordinated algo-

an exhaustive search over the set of feasible solutions.  fithms take0.4 seconds per time step, while the iterative
algorithm takesl second per time step.
V. EXPERIMENTAL RESULTS

Average cost results broken down by cost type can be VI. ConcLusiON

seen in the stacked bar chart in Fig. 3. The average totalA queuing network model of air traffic and airspace is
cost achieved by the coordinated algorithmil&% and 9% used to formulate the Coordinated Tactical Air Traffic and
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Fig. 4. Aircraft over capacity for each control position a@tck time step [8]

during one of the Monte Carlo simulations when using the (@), nb)
independent, (c) iterative, and (d) coordinated algorithm

El

Airspace Management Problem (CTATAMP). This problem
involves selecting tactical air traffic delays and rerowies
airspace sector configurations that reduce control pusitiBO]
congestion. Algorithms for this problem are proposed by
combining a traffic control algorithm based on Projectivan€o
Scheduling and an airspace control algorithm based on apprg!
imate dynamic programming. A new coordinated approach is
proposed in which traffic is controlled with the modified PCS
algorithm and the rollouts approximate dynamic prograngniﬁlz]
algorithm for airspace control uses the same modified PCS
traffic control as part of the heuristic that helps it appnoaie
optimal costs-to-go. In Monte Carlo simulations of a simpl@3]
problem instance, the coordinated algorithm achievesageer
total costs that ard8% and 9% lower than those achieved
by the independent and iterative algorithms, respectivady [14]
well as lower average congestion costs, traffic controls;ost
and airspace control costs. The coordinated and independen
algorithms each compute solutions more than two timesrfaste’!
than the iterative algorithm.

VIl. FUTURE WORK

A major remaining challenge is to refine and tune thﬁﬂ
cost function used in this research. The coordinated ahlyari
should be run on a historical problem instance involving a
weather event and with weather and traffic prediction un
certainties. Its performance should be compared to that of
historical air traffic and airspace control actions. The €om
putational efficiency of the modified PCS algorithm mudt®!
be improved. Finally, an effort should be made to proveo
convergence, stability, or optimality results for the nfidl
PCS and coordinated algorithms.

[16]
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